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ABSTRACT: For the newly implemented Global Ensemble Forecast System, version 12 (GEFSv12), a 31-yr (1989–2019)
ensemble reforecast dataset has been generated at the National Centers for Environmental Prediction (NCEP). The refore-
cast system is based on NCEP’s Global Forecast System, version 15.1, and GEFSv12, which uses the Finite Volume 3 dynami-
cal core. The resolution of the forecast system is ∼25 km with 64 vertical hybrid levels. The Climate Forecast System (CFS)
reanalysis and GEFSv12 reanalysis serve as initial conditions for the Phase 1 (1989–99) and Phase 2 (2000–19) reforecasts,
respectively. The perturbations were produced using breeding vectors and ensemble transforms with a rescaling technique
for Phase 1 and ensemble Kalman filter 6-h forecasts for Phase 2. The reforecasts were initialized at 0000 (0300) UTC once
per day out to 16 days with 5 ensemble members for Phase 1 (Phase 2), except on Wednesdays when the integrations were
extended to 35 days with 11 members. The reforecast dataset was produced on NOAA’s Weather and Climate Operational
Supercomputing System at NCEP. This study summarizes the configuration and dataset of the GEFSv12 reforecast and pre-
sents some preliminary evaluations of 500-hPa geopotential height, tropical storm track, precipitation, 2-m temperature, and
MJO forecasts. The results were also compared with GEFSv10 or GEFS Subseasonal Experiment reforecasts. In addition to
supporting calibration and validation for the National Water Center, NCEP Climate Prediction Center, and other National
Weather Service stakeholders, this high-resolution subseasonal dataset also serves as a useful tool for the broader research
community in different applications.
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1. Introduction

The important role of a reforecast in validating and cali-
brating weather and climate model forecasts (Hamill et al.
2004, 2006, 2013, 2015; Hamill and Whitaker 2006; Wilks and
Hamill 2007; Hagedorn et al. 2008, 2012; Hagedorn 2008;
Hamill 2012; Hamill and Kiladis 2013; Baxter et al. 2014;
Scheuerer and Hamill 2015; Ou et al. 2016; Guan et al. 2015,
2019; Gascon et al. 2019), diagnosing model errors (Hamill
et al. 2013), and predicting extreme or rare events (Hagedorn
2008; Hamill et al. 2008, 2013; Guan and Zhu 2017; Nardi et al.
2018; Li et al. 2019) has been widely recognized. Currently,
reforecast datasets are utilized operationally at several
weather-climate centers worldwide. For instance, a reforecast
dataset is used to calibrate forecasts at the Canadian Meteo-
rological Center (CMC), the National Centers for Environ-
mental Prediction (NCEP), and European Centre for
Medium-Range Weather Forecasts (ECMWF) to improve

numerical weather guidance for a variety of forecast time
scales. In combination with an analysis climatology, a refore-
cast (i.e., model) climatology is also employed to provide real-
time extreme weather forecasts for some common concern
weather elements at NCEP (Guan and Zhu 2017) and
ECMWF (Lalaurette 2003; Hagedorn 2008). Reforecasts are
used extensively in conjunction with hydrologic prediction
(Demargne et al. 2014; Scheuerer and Hamill 2018; Emerton
et al. 2018). More recently, as part of the Subseasonal Experi-
ment (SubX; Pegion et al. 2019), seven modeling groups from
the United States and Canada generated reforecast datasets,
separately. The combined datasets provide a foundation for
employing current best practice methods for real-time weeks
3 and 4 outlooks of hazardous and extreme events at the
NCEP Climate Prediction Center (CPC).

Ideally, creating a reforecast dataset requires a set of con-
sistent reanalysis data as initial conditions. Both reforecast
and reanalysis should also employ the same model system
that is used in the actual real-time forecast, ideally at the
same resolution. However, generating a full dataset for aCorresponding author: Hong Guan, Hong.Guan@noaa.gov
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reanalysis and reforecast, usually from 10 years to several dec-
ades of data, is an extremely time- and labor-intensive proce-
dure and impractical in operational forecasting. Therefore, an
inconsistent initial analysis had been used for the GEFSv11
(Guan and Zhu 2017) and GEFS-SubX reforecasts. For
example, the 17 years (1999–2015) of GEFS_SubX reforecasts
(Zhu et al. 2018; Li et al. 2019; Guan et al. 2019) used the
Climate Forecast System Reanalysis (CFSR) and Global
Data Assimilation System (GDAS) as the initial conditions
for 1999–2010 and 2011–16, respectively. In addition to the
inconsistency of the analysis itself, the forecast systems gener-
ating the reanalysis are also quite different from the refore-
cast and real-time forecast systems. This inconsistency in
reanalysis has resulted in a difference in the 2-m temperature
bias characteristics (Hamill 2017; Guan et al. 2019), especially
for short lead times when initial conditions play a critical role
in the forecast. This further confirms the strong desirability of
simultaneously generating reanalysis and reforecast data in
the operational implementation.

On 23 September 2020, the FV3 (Finite Volume)-based
Global Ensemble Forecast System version 12 (GEFSv12) was
implemented at the National Oceanic and Atmospheric Admin-
istration (NOAA). To provide seamless numerical guidance to a
broad range of users and partners, the integration time of the
GEFSv12 was extended from week 1 (weather forecasts) and
week 2 (extended forecasts) to weeks 3–5 (subseasonal fore-
casts). Accompanying the GEFSv12 implementation, 20-yr rean-
alysis and 31-yr reforecast datasets were also simultaneously
produced by NOAA’s Physical Science Laboratory (PSL) and
Environmental Modeling Center (EMC), respectively, to support
stakeholders CPC and the National Water Center (NWC) for
subseasonal and hydrological applications. This marks the first
official generation of a reanalysis/reforecast as an integral part of
an implementation of the GEFS at NOAA. In addition, North
American Ensemble Forecast System (NAEFS; Candille 2009;
Candille et al. 2010) products have been updated based on the
GEFSv12 Phase 2 reforecast.

The reforecast system configuration is summarized in section 2.
The reforecast dataset, public access, and data corrections are
introduced in section 3. The statistical characteristics of the raw
forecasts are described in section 4. In section 5, an example of
the reforecast application is discussed. Summary and conclusions
are given in section 6.

2. Reforecast system configuration

The GEFSv12 reforecast system is based on the current
operational Global Forecast System version 15.1 (GFSv15.1;
EMCs 2019) which uses the Geophysical Fluid Dynamics
Laboratory (GFDL) FV3 Cubed-Sphere dynamical core (Lin
and Rood 1997; Lin 2004; Putman and Lin 2007; Harris and
Lin 2013). The resolution of the forecast system is ∼25 km
(C384 grid) in the horizontal with 64 vertical hybrid levels
with the top layer centered around 0.27 hPa (∼55 km).

The convection scheme used in the GEFSv12 is the simpli-
fied Arakawa–Schubert (SAS) shallow and deep convection
schemes (Han and Pan 2011) updated with a scale-aware
parameterization (Han et al. 2017). The scheme was also

further modified to reduce excessive cloud top cooling for the
model stabilization. The cloud microphysics scheme is from
GFDL, which includes five predicted cloud species (cloud
water, cloud ice, rain, snow and graupel; Zhou et al. 2019,
2021, manuscript submitted to Wea. Forecasting). The vertical
mixing process of the planetary boundary is based on the
hybrid eddy-diffusivity mass-flux (EDMF) scheme (Han et al.
2016). The shortwave and longwave radiative fluxes are calcu-
lated using the Rapid Radiative Transfer Model (RRTM)
developed at Atmospheric and Environmental Research
(Clough et al. 2005). The GFS orographic gravity wave drag
and mountain blocking schemes follows Alpert et al. (1988),
while convective gravity wave drag employs the scheme
developed by Chun and Baik (1998). The GFS Noah land sur-
face model (Chen et al. 1996; Koren et al. 1999; Ek et al. 2003;
Mitchell et al. 2005) are used to simulate the land surface pro-
cesses. The surface layer parameterization follows Long
(1984, 1986) and Zheng et al. (2012, 2017).

The SST boundary condition is derived from a two-tiered
sea surface temperature (SST) and near sea surface tempera-
ture (NSST) approach that accounts for the day-to-day vari-
ability and diurnal variation of SST, respectively (Zhu et al.
2017, 2018; Li et al. 2019). A modern ensemble forecast sys-
tem should include initial perturbations to approximate analy-
sis/observation uncertainty and model perturbations to
approximate the forecast uncertainty from model imperfec-
tions, such as the finite resolution of the prediction system
and the use of deterministic parameterizations of subgrid phe-
nomena (Buizza et al. 1999; Palmer 2001, 2012; Berner et al.
2017). To improve the model’s uncertainty representation,
stochastic kinetic energy backscatter (SKEB; Shutts et al.
2004; Shutts 2005) and stochastically perturbed parameteriza-
tion tendencies (SPPTs; Buizza et al. 1999; Palmer et al. 2009)
are applied. More details on the GEFSv12 forecast system
can be found in Zhou et al. (2019, 2021, manuscript submitted
toWea. Forecasting).

The reforecast was integrated once per day out to 16 days,
except on Wednesdays when the forecast was extended to
35 days. In contrast to the real-time forecast system (31 mem-
bers), the reforecast system has a smaller ensemble size to
minimize computational expense: 5 and 11 members for the
16- and 35-day runs, respectively. As illustrated in Table 1,
the reforecast utilizes two sets of analysis data because a con-
sistent 31-yr reanalysis is unavailable.

For the Phase 1 reforecast (GEFSv12_p1, 1989–99), the Cli-
mate Forecast System Reanalysis (CFSR; Saha et al. 2010)
was used as the initial control analysis. The breeding vector
and ensemble transform with rescaling (BV-ETR) cycling
perturbations (Wei et al. 2008), generated for the NOAA’s
second generation GEFS reforecast (Hamill et al. 2013), was
used as initial conditions for the perturbed members. The new
16 State Soil Geographic (STATSGO) soil classification and
20 International Geosphere Biosphere Programme (IGBP)
vegetation classification (Ek et al. 2016) were applied to char-
acterize soil and vegetation in the reforecast runs, although
the CFSR used the old nine soil texture classes (Zobler 1986,
1999) and 13 vegetation catalogs (Dorman and Sellers 1989).
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For the Phase 2 reforecasts (GEFSv12_p2, 2000–19), initial
conditions were GEFSv12 reanalyses (Hamill et al. 2022).
The reanalyses were generated from the FV3 GFS/ensemble
Kalman filter (EnKF) hybrid analyses and EnKF 6-h forecasts
with the incremental analysis update (IAU; Bloom et al.
1996) replay process, which distributes the analysis incre-
ments over each time step within a fixed time window (cur-
rently 2100–0300 UTC). During this replay procedure, the
climatological snow depths at 0000, 0600, and 1200 UTC
(affected by a bug in data assimilation, see Hamill et al. 2022)

were replayed to corresponding snow analyses to adjust rean-
alysis states to be more consistent with the snow analyses at
these times. The GEFSv12_p2 reforecast was initiated from
the data at the end of the replay IAU window (i.e., 0300
UTC). For both the GEFSv12 reanalysis and GEFSv12_p2
reforecast, soil moisture and vegetation were sorted based on
the 16 soil moisture and 20 vegetation types (Ek et al. 2016).

The GEFSv12 reanalysis also has several differences com-
pared to the current operational analysis. First, the IAU pro-
cess was applied to reduce noise and improve accuracy.

TABLE 1. The summary of initial and boundary conditions for the GEFSv12 reforecasts.

Reforecast characteristic 1989–99 2000–19

Reanalysis states for initial conditions CFSR (Saha et al. 2010) 1 bred vectors
(Wei et al. 2008)

GEFSv12 (Hamill et al. 2022)

SST initial states OI (Reynolds et al. 2002) OI (Reynolds et al. 2002)
SST forecast NSST (Zhu et al. 2017, 2018; Li et al.

2019)
NSST (Zhu et al. 2017, 2018; Li et al. 2019)

Soil moisture and vegetation
classification for initial states

Following Zobler (1986, 1999), Dorman
and Sellers (1989)

Following Ek et al. (2016)

TABLE 2. The 176 upper air variables.

Vertical level U V W T Height (P) Q (RH) PV

1 hPa X X X X X } }

2 hPa X X X X X } }

3 hPa X X X X X } }

5 hPa X X X X X } }

10 hPa X X X X X } }

20 hPa X X X X X } }

30 hPa X X X X X } }

50 hPa X X X X X } }

70 hPa X X X X X } }

100 hPa X X X X X X }

150 hPa X X X X X X }

200 hPa X X X X X X }

250 hPa X X X X X X }

300 hPa X X X X X X }

400 hPa X X X X X X }

500 hPa X X X X X X }

600 hPa X X X X X X }

700 hPa X X X X X X }

800 hPa X X X X X X }

850 hPa X X X X X X }

900 hPa X X X X X X }

925 hPa X X X X X X }

950 hPa X X X X X X }

975 hPa X X X X X X }

1000 hPa X X X X X X }

1 (hybrid) X X X X X (X) }

2 (hybrid) X X X X X (X) }

3 (hybrid) X X X X X (X) }

4 (hybrid) X X X X X (X) }

2 3 1026 (PV) X X X (X) } }

310 K (isentropic) } } } } } } X
320 K (isentropic) } } } } } } X
350 K (isentropic) } } } } } } X
10 m (AGL) X X } } } } }

100 m (AGL) X X } } } } }
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Second, the NSST was replaced by optimum interpolation sea
surface temperature (OISST; Reynolds et al. 2002) to avoid
an observed large SST bias in climatologically cloudy regions
for the earlier assimilation years. Third, to reduce the compu-
tation resources required, the horizontal resolutions of the
control and perturbed members were decreased from C768
(∼13 km) and C384 (∼25 km) to C384 and C192 (∼50 km),
respectively. A detailed description of the GEFSv12 reanaly-
sis can be found in Hamill et al. (2022).

3. Reforecast dataset, public access, and data corrections

a. Reforecast dataset and public access

The full 31 years of reforecast data are currently archived
on the High Performance Storage System (HPSS). All 590
variables in grib2 format are saved at 3-h intervals at 0.258 res-
olution for the first 10 days and 6-h intervals at 0.58 beyond 10
days of the forecast. By request, 77 of the 590 variables were
stored on the WCOSS disk for quick access by the internal
NOAA stakeholders. The 219 selected variables for the Phase
2 reforecasts are saved on dedicated disks mounted on
NOAA/NWS/NCEP’s ftp server (ftp://ftp.emc.ncep.noaa.gov/
GEFSv12/reforecast) and Amazon web Services (AWS,

TABLE 3. The 43 surface and other single-level variables.

Variables Total

Mean sea level pressure 1
Surface pressure 1
Surface height 1
Skin temperature 1
Soil temperature at 0.0–0.1-, 0.1–0.4-,

0.4–1.0-, and 1–2-m depth
4

Volumetric soil content at 0.0–0.1-, 0.1–0.4-,
0.4–1.0-, and 1–2-m depth

4

Water equivalent of accumulated snow
depth

1

2-m temperature 1
2-m specific humidity 1
Maximum temperature in last 6-h period

(0000, 0600, 1200, 1800 UTC) or in last
3-h period (0300, 0900, 1500, 2100 UTC)

1

Minimum temperature in last 6-h period
(0000, 0600, 1200, 1800 UTC) or in last
3-h period (0300, 0900, 1500, 2100 UTC)

1

Surface wind gust 1
Surface wind stress, u component 1
Surface wind stress, y component 1
Surface roughness 1
Total precipitation in last 6-h period (0000,

0600, 1200, 1800 UTC) or in last 3-h
period (0300, 0900, 1500, 2100 UTC)

1

Convective precipitation in last 6-h period
(0000, 0600, 1200, 1800 UTC) or in last
3-h period (0300, 0900, 1500, 2100 UTC)

1

Non-convective precipitation in last 6-h
period (0000, 0600, 1200, 1800 UTC) or
in last 3-h period (0300, 0900, 1500, 2100
UTC)

1

Boundary layer height 1
Average surface latent heat net flux average

in last 6-h period (0000, 0600, 1200, 1800
UTC) or in last 3-h period (0300, 0900,
1500, 2100 UTC)

1

Average surface sensible net heat flux
average in last 6-h period (0000, 0600,
1200, 1800 UTC) or in last 3-h period
(0300, 0900, 1500, 2100 UTC)

1

Average ground heat net flux average in
last 6-h period (0000, 0600, 1200, 1800
UTC) or in last 3-h period (0300, 0900,
1500, 2100 UTC)

1

Convective available potential energy 1
Convective inhibition 1
0–3-km storm relative helicity 1
Perceptible water 1
Total ozone 1
Total cloud cover average in last 6-h period

(0000, 0600, 1200, 1800 UTC) or in last
3-h period (0300, 0900, 1500, 2100 UTC)

1

Downward shortwave radiation flux at the
surface average in last 6-h period (0000,
0600, 1200, 1800 UTC) or in last 3-h
period (0300, 0900, 1500, 2100 UTC)

1

TABLE 3. (Continued)

Variables Total

Downward longwave radiation flux at the
surface average in last 6-h period (0000,
0600, 1200, 1800 UTC) or in last 3-h
period (0300, 0900, 1500, 2100 UTC)

1

Upward shortwave radiation flux at the
surface average in last 6-h period (0000,
0600, 1200, 1800 UTC) or in last 3-h
period (0300, 0900, 1500, 2100 UTC)

1

Upward longwave radiation flux at the
surface average in last 6-h period (0000,
0600, 1200, 1800
UTC) or in last 3-h period (0300, 0900,
1500, 2100 UTC)

1

Upward longwave radiation flux at the top
of the atmosphere average in last 6-h
period (0000, 0600, 1200, 1800 UTC) or
in last 3-h period (0300, 0900, 1500, 2100
UTC)

1

Momentum flux, u-component average in
last 6-h period (0000, 0600, 1200, 1800
UTC) or in last 3-h period (0300, 0900,
1500, 2100 UTC)

1

Momentum flux, y-component average in
last 6-h period (0000, 0600, 1200, 1800
UTC) or in last 3-h period (0300, 0900,
1500, 2100 UTC)

1

Cloud ceiling 1
Water runoff sum over the last 6-h period

(0000, 0600, 1200, 1800 UTC) or in last
3-h period (0300, 0900, 1500, 2100 UTC)

1
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https://noaa-gefs-retrospective.s3.amazonaws.com/index.html),
which are accessible by the broader community. These 176
upper-air and 43 surface or single-level publicly accessible var-
iables are separately listed in Tables 2 and 3, respectively. For
pressure-level data above 700 hPa (Table 2), the Phase 2 data
are also saved at 0.58 grid spacing, even during the first 10 days
of the forecast, to conserve space.

b. Data corrections

The integrations for the Phase 2 reforecasts were initiated
from the 0300 UTC restart data files. Thus, the model outputs
for the 41 accumulated, minimum, maximum, and average
variables for 0000–0300 UTC and 0000–0600 UTC are incor-
rect since they were actually calculated based on the values
from the beginning of integration (i.e., 0300 UTC) to the first
time-step and to 0600 UTC, respectively. These 41 variables
were postprocessed by combining the control NEMSIO
(NOAA Environmental Modeling System Input/Output)
replay reanalysis at 0300 UTC and the reforecast data at 0600
UTC. Note that the replay process was only applied to the

control members so that for 0300 UTC, the reforecast data
for each member was simply replaced by the corresponding
control-member replay data. For 0600 UTC, the minimum
and maximum are the smaller and larger of the two values,
respectively, while the accumulated values are the sum of the
two. The 6-h average fields were processed in a more compli-
cated manner. The raw reforecast average field at 0600 UTC
is actually the 0300–0600 UTC accumulation divided by a 6-h
time period, while in reality the accumulations take place
over a 3-h period. This was corrected to a 3-h average and
then averaged with the reanalysis data at 0300 UTC. But for
some variables and conditions such an average is not suitable
and special processing is needed. For cloud-base/cloud-top
pressures and cloud-top temperatures, the 0000–0600 aver-
ages were set to be the same as those at 0300 UTC when
clouds do not exist in the 0600 UTC, while the corresponding
averages were set to be the same as those at 0600 UTC when
clouds do not present in the 0300 UTC forecasts. Such a spe-
cial rule was also applied to snow melting flux.

FIG. 1. Ensemble-mean anomaly correlation for Northern Hemisphere (NH; 208–808N)
500-hPa geopotential height for (a) week 1, (b) week 2, and (c) weeks 3 and 4 forecasts. The
black and red colors denote the GEFS_SubX and GEFSv12_p2. The average scores for the two
sets of reforecasts are indicated by the dashed lines and shown in parentheses. Note there
is a data gap from December 2016 to May 2017, corresponding to the period between the
GEFS_SubX reforecast and corresponding real-time forecast. A six-case moving average is
applied to the time series. Since the forecasts are initialized every 7 days, the moving average
spans over 42 calendar days.
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4. Reforecast evaluation

In addition to the GEFSv12 reforecast and corresponding
reanalyses used for initialization described in section 3, there
are also six sets of additional data being used for the current
evaluations and comparisons. These additional datasets are as
follows:

1) CFS reanalysis (1979–March 2011) at T382L64 (∼34 km
horizontal) resolution. The documentation of the system,
including the configurations, can be found in Saha et al.
(2010). The dataset was used as the initial condition for
NOAA’s second-generation of reforecasts (or GEFSv10
reforecast; Hamill et al. 2013) and GEFS_SubX reforecast
(Zhu et al. 2018).

2) NCEP’s operational analysis from the GDAS (NCEP hybrid
Global Data Assimilation System) (2011–present). The docu-
mentation of the GDAS upgrade, including the changes in
configurations, can be tracked through the EMC web-page:
https://www.emc.ncep.noaa.gov/emc/pages/numerical_forec
ast_systems/gfs.php.

These data served as the initial condition for the
GEFSv10 and GEFS_SubX reforecats for the periods
2011–present and 2011–16, respectively.

3) The European Centre for Medium-Range Weather Fore-
casts (ECMWF) reanalysis version 5 (ERA5) (1950–pre-
sent) data approximately 30 km horizontal resolution with

137 hybrid vertical levels, up to an 80-km model top. The
documentation of the ERA5 system, including the configu-
rations, can be found through ECMWF’s web-page: https://
confluence.ecmwf.int/display/CKB/ERA5%3A6data6
documentation. These data were used to evaluate the
2-m temperature forecast for the GEFSv12 and
GEFS_SubX reforecast.

4) NCEP’s Climate Calibrated Precipitation Analysis (CCPA;
2002–present) version 4 (v4) for the contiguous United

FIG. 2. As in Fig. 1, but for the Southern Hemisphere (SH; 208–808S).

FIG. 3. The TC track errors averaged over the Atlantic, east
Pacific, and west Pacific basins binned by decade during the 31-yr
reforecast for GEFSv10 (dashed lines) and GEFSv12 (solid lines).
Black, blue, and red lines denote the 1989–99, 2000–10, and
2011–19 periods, respectively.
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States (CONUS). The documentation can be found in Hou
et al. (2014) and Luo et al. (2018). These data were used to
evaluate precipitation forecasts for the GEFS_SubX and
GEFSv12 reforecasts and to calibrate the GEFSv12
reforecast.

5) GEFSv10 reforecast (1985–2011) and forecast (2012–19).
The documentation on this system and configurations can
be found through Zhu et al. (2012) and Hamill et al.
(2013). These data were used for the comparison with the
GEFSv12 reforecast for hurricane track forecasts.

6) GEFS_SubX reforecast (1999–2016) and forecast (2017–19)
at TL574L64 (day 0–8; ∼34-km horizontal resolution) and
TL382L64 (day 8–35; ∼52-km horizontal resolution). The
documentation of the GEFS_SubX system and the configu-
rations can be found in Zhu et al. (2018). The GEFS_SubX
reforecast is considered a benchmark dataset to measure the
ability of the GEFSv12 reforecast to predict 500-hPa geopo-
tential height, 2-m temperature, precipitation, and Madden
Julian oscillation (MJO).

a. 500-hPa geopotential height

The anomaly correlation of 500-hPa geopotential height is
widely used as an essential metric to estimate the skill of weather
forecasts, especially for mid and high-latitude weather systems.
Here, 500-hPa geopotential height for the GEFS_SubX and
GEFSv12_p2 reforecasts are evaluated against their own analy-
ses (i.e., CFSR and GEFSv12 reanalysis). CDAS2 is the analysis
climatology used to calculate analysis anomalies as well as

forecast anomalies for both GEFSv12_p2 and GEFS_SubX.
Over the Northern Hemisphere (NH, Fig. 1), the GEFSv12_p2
outperforms the GEFS_SubX with improvements in average
anomaly correlation (AC) of 1.5%, 5.5%, and 2.5% for week 1,
week 2, and weeks 3 and 4 forecasts, respectively. Like Zhu
et al.’s (2018) work, the anomaly correlations for week 1, week 2,
and weeks 3 and 4 are calculated by averaging forecast lead days
1–7, 8–14, and 15–28, respectively, and the corresponding analysis
valid at 0000 and 1200 UTC. Over the Southern Hemisphere
(SH, Fig. 2), the average AC scores are slightly lower than over
the NH, which is consistent with the previous finding in Zhu et al.
(2018) for the evaluation of the 16-year GEFS_SubX reforecast.
Relative to the GEFS_SubX, the GEFSv12_p2 shows 1.3%
and 3.0% improvements for week 1 and week 2 forecasts
and a 3.3% degradation for the weeks 3 and 4 forecasts. The
significant tests indicate that the week 1 and week 2
GEFSv12_p2 AC are significantly higher than GEFS_SubX
for both NH and SH, while the corresponding AC values
are not significantly different between the GEFSv12_p2 and
GEFS_SubX for weeks 3 and 4. The figures also reveal
higher AC scores in the second decade (2010–19) than the
first decade (2000–09) of the reforecast, and the correspond-
ing calculations indicate that the weeks 3 and 4 scores for
the NH in the second decade increase by 0.074 (or 25%)
and 0.077 (or 26%) for the GEFS_SubX and GEFSv12_p2,
respectively. The enhanced observation system (Noh et al.
2020) may be an explanation for the better performances of
500-hPa forecasts in the most recent decade.

FIG. 4. The daily average Brier score of the CONUS probabilistic quantitative precipitation
forecast (PQPF) from 2002 to 2019 for 24-h accumulated precipitation greater than or equal to
(top) 1.00 and (bottom) 5.00 mm. The comparison is for the GEFS_SubX reforecast (black) and
GEFSv12_p2 reforecast (red) that were run once per week (Wednesday) with 11 members out
to 35 days. The reference truth is CCPAv4.
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b. Tropical cyclone track

Tropical cyclone (TC) track forecasting has been challeng-
ing (Landsea and Cangialosi 2018), especially for the
extended range (beyond day 5). To evaluate the ability of
GEFSv12 to forecast tracks, track errors of the five-member
ensemble means of the GEFSv10 and GEFSv12 are com-
pared for the 31-year reforecast period. The GEFSv10 was
selected because it has a large sample data size like the
GEFSv12 does. For consistency, in addition to the 5-member
runs of the GEFSv12 reforecast, only the first five members
of the GEFSv10 and of the 11-member runs of GEFSv12 are

used in this comparison. The National Hurricane Center
(NHC)/Joint Typhoon Warning Center (JTWC) best (or
observed) tracks were used as a reference for evaluating the
two datasets.

The GEFSv12 skill in forecasting TC tracks has improved
from the GEFSv10. Figure 3 shows the three-basin (Atlantic,
east Pacific, and west Pacific) averaged track errors from both
forecast systems, binned by decade. For all three decades, the
GEFSv12 reduces the track errors with the maximum reduc-
tion during the 2000–10 period, when the reductions reach
approximately 25% and 10% for 1- and 7-day forecasts,

FIG. 5. The reliability diagram of the CONUS probabilistic quantitative precipitation forecast (PQPF) from 2002 to
2019 for 24-h accumulated precipitation greater than or equal to (top) 1.00 and (bottom) 5.00 mm for (left) 12–36 and
(right) 60–84 h. The comparison is for the GEFS SubX version reforecast (black) and GEFSv12_p2 reforecast (red)
that run once per week (Wednesday) with 11 members out to 35 days. The reference truth is CCPAv4. The average
reliability score (RELI) and Brier skill score (BSS) are also presented in each subplot. [Note: This is for a raw ensem-
ble forecast with limited ensemble members (11) compared to the operational 31 members.]
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respectively. For the GEFSv10, the track errors decline with
decade (Fig. 3), which is qualitatively consistent with the
finding in Hamill et al. (2013), based on the 1985–2011 refor-
ecast. This evolution of the track errors is attributed to the
improvement in the initial analysis over the multidecade
period, implying the important impact of initial conditions
on the TC track forecast. For the shorter lead times, the
decline in error from the 2000–10 to 2011–19 period is more
evident than that from the 1989–99 to 2000–10 period. For
example, the error reduction is 11.6 n mi (or 29.8%; 1 n mi =
1.852 km) between the two later periods, while the corre-
sponding reduction is 5.7 n mi (or 12.8%) between the two
earlier periods. In addition to the observation data increase
with decade, the analysis system upgrade from CFSR to
GFS/GDAS and the perturbation method change from BV-
ETR to EnKF during the 2011–19 period may be a reason
for the observed sharper error reduction. The impact of ini-
tial conditions is also further confirmed in the current
GEFSv12 reforecast. The track errors in the two GEFSv12
reanalysis time periods (2000–10 and 2011–19) are more
consistent with each other and much smaller compared to
the CFSR period (1989–99), showing the importance of initiali-
zation with modern assimilation methods. The consistent error
characteristics during the Phase 2 reforecast provide a good
potential for statistical post processing algorithms to improve
the TC track forecast (Galarneau and Hamill 2015). In addi-
tion to the initial conditions, the reforecast model itself also
plays a role in influencing the accuracy of the track forecast.
This is illustrated by the comparison between the GEFSv10
and GEFSv12 during the 1989–99 period, when both refore-
casts used the CFSR as the initial condition. As should be
expected, the model’s influence becomes more pronounced at
longer lead times (.∼4 days). Compared to GEFSv10, the
GEFSv12 reduces the track errors by 6.3% and 5.5% for the
6- and 7-day forecasts, respectively.

c. Precipitation

The precipitation forecasts for the GEFS_Subx and GEFSv12
were estimated against the CCPAv4 for the 2002–19 period
when the reforecast and CCPA data overlapped. The CCPA cli-
matology was calculated based on the 2002–19 CCPA data. For
this study, the 11-member reforecasts and CCPA data were inter-
polated to a 18 3 18 grid over the CONUS, the only available
analysis region. Figure 4 shows the comparisons of Brier score
(BS, Brier 1950) between the two sets of reforecasts for the 24-h
accumulated precipitation greater than 1 and 5 mm. The BS,
ranging between 0 and 1, is commonly used to verify the accuracy
of a probability forecast. Clearly, the GEFSv12 consistently dis-
plays the better (i.e., lower) Brier scores compared to the
GEFS_SubX, with a more obvious improvement at lead times
shorter than about 10 days. Forecast skill decreases with lead
time and reaches saturated values at approximately day 13 for all
situations. The precipitation probability forecast biases for 12–36
and 60–84 h for amounts greater than 1 and 5 mm were mea-
sured by reliability diagrams (Fig. 5). The GEFSv12 and
GEFS_SubX show very similar performance for the precipitation

greater than 1.00 mm. For the heavier precipitation category
(.5 mm), the GEFSv12 slightly outperforms the GEFS_SubX
with its curves being closer to the diagonal lines. Figure 5 also
shows the reliability curves are much closer to the diagonal at
low probabilities but veering away for high probabilities. The
Brier skill score (BSS, Wilks 1995) measures the improvement of
the probability forecast over the reference climatology. Unlike
BS, where lower is better, for BSS higher is better. In the heavier
rain conditions, the BSS for the probabilistic precipitation fore-
cast for the GEFSv12 are improved by about 16.1% and 20.1%
for 12–36 and 60–84 h, respectively (Fig. 5). The improvements
are also observed for the other lead times (not shown). These
improvements are attributed to the combined influence of better
initial conditions, more advanced microphysics schemes, finer
resolution and a new FV3 dynamic core. The impact that each of
these factors has individually on the evaluation is not addressed
in this study.

d. MJO prediction skill

The newly operational GEFSv12 extended its output to 135
days lead to cover the subseasonal time scale. The MJO is one
of the most important climate phenomena for subseasonal fore-
casts. Here we estimate MJO prediction skill using the real-time
multivariate MJO (RMM) index (Wheeler and Hendon 2004)
for the GEFS_SubX, GEFSv12_p1, and GEFSv12_p2 (Fig. 6).
Skill is defined as the bivariate anomaly correlation between
the analysis and forecast RMM1 and RMM2 index. For this
comparison, the CFSR (GEFSv12 reanalysis) serves as the ref-
erence analysis for the GEFS_SubX and GEFSv12_p1
(GEFSv12_p2). In other words, the estimates are based on their
own analysis data. Overall, the MJO forecast skill for the
GEFSv12_p2 (∼21.5 days) is similar to the GEFS_SubX and
GEFSv12_p1 (∼21 days) when using AC = 0.5 as the threshold
of useful skill. The SubX forecast skill for the 20-year sample in
this study is also very comparable to the estimate (∼21–22 days)
that was made using a much smaller sample size (2 years) in
Zhu et al. (2018) and Li et al. (2019). The GEFSv12_p2 also

FIG. 6. The real-time multivariate MJO (RMM) skill as a func-
tion of lead time for GEFS_SubX (black; 2000–16), GEFSv12_p1
(red; 1989–99), and GEFSv12_p2 (blue; 2000–19) reforecasts.
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exhibits higher skill for shorter lead times (,∼18 days) than the
GEFSv12_p1, possibly due to the benefit of the improved initial
conditions for the Phase 2 reforecast. For lead times longer
than 22 days, the forecast skill for all three sets of data is poor.
A fully coupled atmosphere–ocean–wave–ice model, currently
under development at NCEP, aims to improve the MJO fore-
cast skill, especially for longer lead times. The reader is referred

to Hamill and Kiladis (2013) for MJO verification on GEFSv10
reforecasts.

e. 2-m temperature errors

The January and July global 2-m temperature mean errors

(or biases) for the 11-member runs were calculated for week

FIG. 7. The difference in 2-m temperature (8C) between the CFSR and ERA5 for (a) January and (b) July over
Phase 1. Spatial distribution of 2-m temperature mean error (i.e., bias) over Phase 1 for January during (c) week 1,
(e) week 2, and (g) weeks 3 and 4 forecasts, and July during (d) week 1, (f) week 2, and (h) weeks 3 and 4 forecasts.
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1, week 2, and weeks 3 and 4 during the GEFSv12_p1 (Fig. 7)
and GEFSv12_p2 (Fig. 8) reforecast periods. The biases of
week 1, week 2, and weeks 3 and 4 are the day 1–7, 8–14, and
15–28 averaged forecast errors over the corresponding fore-
cast periods, respectively. Also displayed are the differences
between CFSR and ERA5 (Figs. 7a,b) and the differences
between the GEFSv12 reanalysis and ERA5 (Figs. 8a,b). The

ERA5 was used as the reference for both phases to ensure a
consistent comparison. A large warm bias over northern Asia
is persistently seen in January (Figs. 7a,c,e,f and 8a,c,e,f) with
a decreasing trend over increasing forecast lead time. In gen-
eral, the error in 2-m temperature at the weeks 3 and 4 time
scale is nearly saturated (Guan et al. 2019) and the impact
from initial conditions decreases. At this time scale, the

FIG. 8. The difference in 2-m temperature (8C) between the GEFSv12 reanalysis and ERA5 for (a) January and (b)
July over Phase 2. Spatial distribution of 2-m temperature mean error (i.e., bias) over Phase 2 for January during (c)
week 1, (e) week 2, and (g) weeks 3 and 4 forecasts, and July during (d) week 1, (f) week 2, and (h) weeks 3 and 4
forecasts.
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GEFSv12 generates a cold bias over North America (NA) in
January (Figs. 7g and 8g). The cold bias locations are differ-
ent, mostly over the eastern United States for GEFSv12_p1
and western Canada for GEFSv12_p2. A larger cold bias for
the boreal winter season over the NA domain has been persis-
tently observed in several generations of the NCEP GEFS

(Guan et al. 2015, 2019) and was thought to be related to the
imperfect parameterization of winter-associated physical pro-
cesses (Guan et al. 2019).

Snow is considered to be one of the most important winter-
time land surface characteristics. To illustrate the influence of
the snow forecast on bias characteristics, we compare the 2-m
temperature bias over the NA domain for the 408h forecast
(approximately the middle of week 3) with snow cover, with-
out snow cover, and for all conditions (Fig. 9). The compari-
son was performed based on control members for the
GEFSv12_p2 reforecast period. January–March is selected
because those months show a consistently large cold bias (see
red line in Fig. 10) and the expected frequent occurrences of
snow cover. The selection by individual members leads to a
clear division between snow-covered and snow-free cases.
The existence of forecast snow was inferred if the snow water
equivalent is greater than or equal to 1 mm. Clearly, the 2-m
temperature bias characteristics are quite different between
the two conditions (Figs. 9c,d). Figure 10 shows the time evo-
lution of biases over a small region near the central United
States. A larger cold bias is dominant under the existence of
snow cover with a domain-averaged value of 24.798C during
the GEFSv12_p2 period. In contrast, bias is much smaller
under snow-free conditions where the average value is about
20.188C. This indicates there is considerable room for
improving the 2-m temperature forecast under snow-covered
conditions. An improvement in modeling snow-associated
physical processes would undoubtedly lead to a better 2-m
temperature forecast. The large difference in bias characteris-
tics between cases with and without snow cover also suggests

FIG. 9. (a) Percentage of snow cover days, (b) 2-m temperature forecast bias under all conditions, (c) bias with snow
cover forecast, and (d) bias without snow cover forecast for 408-h control-member forecast over NA. The results are
based on the GEFSv12_p2 reforecast for January, February, and March.

FIG. 10. Time series of 2-m temperature forecast errors for
408-h control-member forecast over a small region (408–458N,
908–1008W) near the central United States (marked with the
black rectangle in Fig. 9a). Black, red, and blue solid curves
indicate the errors for January, February, and March forecasts
under all conditions, with, and without snow cover, respectively.
The corresponding dashed lines denote the averages over the
entire period.
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that statistical calibration of 2-m temperature should be per-
formed based on the existence of snow. It was noted that the
bias correction using a unified 2-m temperature bias climatol-
ogy for the NA cold season is much less efficient compared to
the warm season (Guan et al. 2019). Apparently, the pro-
posed snow dependent bias correction method should
improve statistical post processing for the 2-m temperature
forecast during the cold season. This will be confirmed in our
future work.

In contrast to January 2-m temperature biases in the initial
state are relatively smaller in July (Figs. 7b and 8b). For weeks 3
and 4, the model showed a large warm bias over the central
United States during the GEFSv12_p1, which is consistent with
the findings in Guan et al. (2019) though an earlier forecast sys-
tem (i.e., GEFS_SubX) was used in that study. During the
GEFSv12_p2, the model shows a bias pattern similar to the
GEFSv12_p1, but the warm bias over the central United States is
reduced.

To better understand the impact of using different initial
conditions and forecast systems to produce 2-m temperature
forecasts, the seasonal variability of 2-m temperature bias is
compared for the NA weeks 3 and 4 forecasts (land only)
among the GEFS_SubX, GEFSv12_p1, and GEFSv12_p2 in
Fig. 11. All three sets of reforecasts display a cold bias dur-
ing the October–April and warm bias during the May–June
period. The GEFS_SubX shows the strongest seasonal vari-
ability (or largest amplitudes) with a maximum cold bias of
21.88C in March and warm bias of 1.58C in June. When the
forecast systems are the same (i.e., GEFSv12_p1 and
GEFSv12_p2), the differences in 2-m temperature bias are
relatively small. Overall, the GEFSv12_p1 is warmer than
the GEFSv12_p2, except in December. The systematic dif-
ference during the July–September period is also notewor-
thy. Further diagnosis is needed to address this difference in
the future.

5. Postprocessing of reforecast (precipitation)

Calibration is one of the most common applications of a
reforecast dataset. Precipitation is one of the most impact-
ful weather elements (Hamill and Whitaker 2006; Hamill
et al. 2008; Hamill 2012; Schmeits and Kok 2010; Hamill
et al. 2015; Hamill and Scheuerer 2018; Scheuerer and
Hamill 2018; Specq and Batté 2020). Here we demonstrate
the impact of using reforecast data to improve precipitation
forecasts.

a. Methodology

We take advantage of long-term training data to calibrate
precipitation through a quantile-mapping technique (Ines and
Hansen 2006; Hamill and Scheuerer 2018). A “quantile-
based” bias correction approach, also referred to as
“histogram equalization” and/or “rank matching” (Hamlet
et al. 2002; Wood et al. 2004; Piani et al. 2010), is useful to sta-
tistically transform rainfall simulated by a model to bias cor-
rected data.

In this study, the statistics of 24-h accumulated rainfall for
CCPA and GEFSv12 reforecasts were determined indepen-
dently for each grid point and each lead times over CONUS.
For simplicity, the five-member ensemble means for day 1,
5, 10, and 15 forecasts during the 2002–19 period were used
for this practice. The method can also be applied to the indi-
vidual ensemble members. The corresponding sample size
at each grid point and each lead time is 6574 days. The rain-
fall intensity distributions for both CCPA and GEFSv12
reforecasts are well approximated by the gamma distribu-
tion. The leave-one-out-cross-validation procedure has been
implemented. For example, 2019 forecasts are trained using
2002–18.

The bias-corrected procedure is to do a transformation
between CCPA cumulative distribution function (CDF) and

FIG. 11. Weeks 3 and 4 biases in 2-m temperature forecasts averaged during the GEFS_SubX
(black, 1999–2016), GEFSv12_p1 (red, 1989–99), and GEFSv12_p2 (blue, 2000–19) reforecast
periods over NA, land only.
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reforecast CDF, rather than explicitly to calculate bias. The
formula for the calibration for a particular lead time (t) and
grid (i, j) is expressed as follows:

Qbc i, j, t( ) � F21
CCPA FGEFSv12 Qraw i, j, t( )[ ]{ }

: (1)

The bias-corrected value (Qbc) is the inverse of the
CCPA CDF (F21

CCPA) at the probability corresponding to
the reforecast CDF (FGEFSv12) for a given raw forecast
(Qraw).

b. Application

Figures 12 and 13 demonstrate that both 24-h precipitation
amounts and precipitation probability distributions in the cali-
brated forecast are more consistent with the CCPA than the
raw forecasts. The bias correction dramatically reduces the
wet bias over the entire CONUS (Fig. 12). For longer lead
times (day 10 and day 15; Fig. 13), the raw forecast tends
to underestimate the probability of precipitation less than
∼7.5 mm day21 and overestimate the corresponding value more

FIG. 12. The day-1, day-5, day-10, and day-15 (rows 1–4, respectively) biases for 24-h precipitation from (left)
raw (GEFSv12_p2) and (right) calibrated (GEFSv12_p2-bc) five-member ensemble mean forecasts over the
CONUS.

MONTHLY WEATHER REV I EW VOLUME 150660

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:24 PM UTC



than ∼7.5 mm day21. After the calibration, the model curves
overlap the observed curves for all lead times (Fig. 13). The cali-
bration using long-term reforecast data is particularly important
in improving the model climatology for the heavy precipitation
events (.50 mm) as illustrated in Fig. 14. In the raw forecast, the
model 24-h precipitation events exceeding 50 mm are substan-
tially lower than the CCPA, especially for the longer lead times,
when heavy (or extreme) precipitation events are completely
missed for most of the domain. After the bias correction, both
distributions and magnitudes in heavy precipitation events are
much more consistent with the CCPA throughout all lead times.

6. Summary

For the first time, the simultaneous generation of a multide-
cade reanalysis and reforecast dataset became part of an

operational GEFS implementation. The reforecast dataset is
particularly important, considering the extension to subseaso-
nal forecast time scale in the current GEFSv12. Statistical
postprocessing with a long-term training sample of the refore-
cast has become a routine part of making subseasonal opera-
tional outlooks due to the larger forecast errors that exist at
longer lead times. The dataset is being used to support several
stakeholders in developing their operational products across
many time scales. This large volume dataset is easily accessible
by both the stakeholders and public users from the NCEP
local machines and two public websites. Doubtlessly, this
will further facilitate analysis and contributions to model
developments.

The performance of several selected weather elements, hur-
ricane track, and MJO in the GEFSv12 reforecast were

FIG. 13. The day-1, day-5, day-10, and day-15 probability distributions of 24-h accumulated precipitation for CCPA
(black lines), raw (red lines), and bias-corrected (green lines) five-member ensemble mean forecasts over the full
CONUS domain.
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compared with the GEFS_SubX and GEFSv10 reforecasts. The
error characterization of the 2-m temperature forecast was ana-
lyzed. Overall, the forecast skill for the GEFSv12 is similar to
or better than the GEFS_SubX in 500-hPa geopotential height,
precipitation, and MJO forecasts. It is also worth mentioning
that the degree of some of these improvements is less than
those resulting from the change from the GEFSv11 to GEFS_-
SubX. It should be emphasized that when the GEFS_SubX was
developed, considerable efforts were made to enhance the sto-
chastic physics, surface boundary conditions and convection.
These model enhancements resulted in substantial improve-
ments in model performance compared to the GEFSv11
(Zhu et al. 2018; Li et al. 2019, Guan et al. 2019). Therefore,
when using GEFS_SubX as a benchmark to evaluate GEFS
v12_p2, it should be noted that the GEFS_SubX is a difficult
model to outperform substantially. The two sets of nearly three
decades of reforecast data (GEFSv10 and GEFSv12) provide a
good opportunity to address the impacts of the model and anal-
ysis on hurricane track forecasts. The initial analysis plays an

important role in the accuracy of the track forecast for lead
times shorter than about 5 days. The improvement in the model
itself may be a potential direction to take in reducing the track
forecast error for lead times longer than 5 days, which is a per-
sistent challenge for the NCEP GEFS.

In comparison with the GEFS_SubX, the GEFSv12 sub-
stantially reduces the warm (cold) bias over the NA domain
during the boreal warm (cold) season. However, the cold bias
for the cold season in the GEFSv12 is still considerable. Fur-
ther analysis of the error characteristics demonstrates that
this bias is snow-dependent, emphasizing the importance of
2-m temperature calibration for GEFSv12 based on the exis-
tence of snow cover. The multidecadal reforecast dataset was
also demonstrated to be very useful in calibrating the precipi-
tation and capturing extreme precipitation events.
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